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1. Introduction and General Status 

The main goals of the research under this grant consist of the development of 
mathematical tools and measurement of transport properties necessary for high fidelity modelling 
of crystal growth from the melt and solution, in particular for the Bridgman-Stockbarger growth 
of mercury cadmium telluride (MCT) and the solution growth of triglycine sulphate (TGS). Of 
the tasks desribed in detail in the original proposal, two remain to be worked on: 
- development of a spectral code for moving boundary problems, 

diffusivity measurements on concentrated and supersaturated TGS solutions. 
During this seventh half-year period, good progress has been made on these tasks. 

2. MCT Code development 

In the last six-monthly report we described our work on the sohtion of the coupled 
equations governing momentum (fluid flow) and heat transport together with a moving boundary. 
We reported that the chief problems met during this period have been associated with excessively 
long iteration times and that a Preconditioned Generalized Conjugate Residual (PGCR) scheme 
had been implemented for an irregular domain with a fixed non-planar boundary in an attempt to 
alleviate this problem and that we would apply it to the moving boundary if appropriate. 

We have since successfully implemented this scheme for the general moving boundary 
problem. Our method and the results of a careful comparison of our Bridgman code with other 
work is described in the attached paper which will be submitted for publication in the 
International Journal of Numerical Methods for Heat and Fluid Flow. In an attempt to 
demonstrate the portability of our code from the CRAY to workstations we have tested the 
performance of our code on a variety of machines. The results are also described in the paper. 
Work will continue on further development of the code to include a non-dilute dopant and to 
investigate the feasibility of incorporating radiation between the furnace and ampoule using a 
Finite Element approach. 

3. Diffusivity Measurements 

In the last report we had stated that the development of a new interferometric method to 
measure the diffusivities of supersaturated solutions had been completed. The method was 
described in that report as well as in earlier ones. A rectangular optical cell is initially filled with 
a solution of a certain concentration C. A solution of higher concentration C + AC is then 
injected at the bottom of the cell by means of a syringe. The resulting system is convectively 
stable, in one-dimensional terms, with the heavier solution below the lighter one and mixing 
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occurs by diffusion only. A 2ygo Mark II Mach-Zehnder interferometer interfaced with a 
personal computer is used to follow the evolution of the concentration profile in the cell. At 
regular intervals the interferometric intensity profiles produced are stored and the advanced 
fringe analysis software ZAPPC is used to convert these into refractive index profiles which are 
proportional to the concentration. A numerical integration of these profiles yields the diffusivity. 

Several measurements were done with undersaturated and supersaturated solutions of 
sodium chloride and some of these results were shown in our last report. Our method compares 
well with earlier measurements of diffusivity [1,2] and has a reproducability of better than 1% 
for undersaturated solutions. However, in the supersaturated region the only other attempt to 
measure diffusivities was done by Myerson and co-workers and our values are significantly 
lower than the value reported by them for sodium chloride. Their method, as are most other 
methods, is based on the assumption of constant diffusivity in the concentration range of the 
solution pair used in each measurement. In the supersaturated region the diffusivity is a strong 
function of the concentration and this assumption is no longer valid. Our method does not make 
such an assumption and this is probably the reason for the discrepancy between our values and 
theirs. 

Diffusivity measurements were also made with TGS solutions at 25OC and these are 
shown in fig. 1. The crystalline TGS used to prepare the solutions were provided by Dr. Roger 
Kroes of NASA Marshall Space Flight Center. He also provided the original data from his 
diffusivity and refractive index measurements for undersaturated TGS solutions that were 
presented in graph form in his publications [3,4]. Solubility data for TGS solutions were also 
obtained from the literature [3,5,6]. The refractive index of supersaturated TGS solutions was 
needed for the diffusivity calculations and this was measured with a temperature controlled 
Milton Roy Abbe-3L refractometer. 

We have shown that our method can be successfully used to measure the diffusivities of 
supersaturated TGS solutions at ambient temperatures. We are currently performing 
measurements at concentrations between those shon in fig. 1, in order to obtain a reliable curve 
for the concentration dependence of TGS diffusivities at 25OC. In the near future we will be 
designing a temperature controlled apparatus to measure diffusivities at other temperatures as 
well. 
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4. Presentations and Publications 
From the work carried out under this grant the following papers have been published, 

accepted for publication or are in preparation for submission for publication: 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

A. Nadarajah, F. Rosenberger and J. I. D. Alexander, Modelling the Solution Growth of 
Triglycine SuIfate in Low Gravity, J. Crystal Growth 104 (1990) 218-232. 
F. Rosenberger, J. I. D. Alexander, A. Nadarajah and J. Ouazzani, Influence of Residual 
Gravity on Crystal Growth Processes, Microgravity Sci. Technol. 3 (1990) 162-164. 
J. P. Pulicani and J. Ouazzani, A Fourier-Chebyshev Pseudo-Spectral Method for Solving 
Steadj 3-0  Navier-Stokes and Heat Equations in Cylindrical Cavities, Computers and 
Fluids 20 (1991) 93. 
J. P. Pulicani, S. Krukowski, J. I. D. Alexander, J. Ouazzani and F. Rosenberger, 
Convection in an Asymmetrically Heated Cylinder, Int. J. Heat Mass Transfer 35 (192) 
21 19. 
F. Rosenberger, J. I. D. Alexander and W.-Q. Jin, Gravimetric Capillary Method for 
Kinematic Viscosity Measurements, Rev. Sci. Instr. 63 (192) 269. 
A. Nadarajah, F. Rosenberger and T. Nyce, Interferometric Technique for Diffmivity 
Measurements in (Supersaturated) Solutions, J. Phys. Chem (submitted). 

F. Rosenberger, Boundary Layers in Crystal Growth, Facts and Fancy, in Lectures on 
Crystal Growth, ed. by H. Komatsu (in print). 

F. Rosenberger, Short-duration Low-gravity Experiments - Time Scales, Challenges and 
Results, Microgravity Sci. Applic. (submitted). 

Y. Zhang, J.I.D. Alexander and J. Ouazzani, A Chebishev Collocation Method For 
Moving Boundaries, Heat Transfer and Convection During Directional Solidification, 
Internat. J. Numerical Methods Heat Fluid Flow (in preparation). 

In addition to the above publications, the results of our work have been presented at the 
following conferences and institutions: 

1. J.I.D. Alexander, Modelling the Solution Growth of TGS Crystals in Low Gravity, 
Committee on Space Research (COSPAR) Plenary Meeting, The Hague, Netherlands, 
June 26 - July 6,1990. 
A. Nadarajah, Modelling the Solution Growth of TGS Crystals in Low Gravity, Eighth 
American Conference on Crystal Growth, Vail, Colorado, July 15-21,1990. 

2. 
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3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

J.I.D. Alexander, Commercial Numerical Codes: To Use or Not to Use, Is This The 
Question?, Microgravity Fluids Workshop, Westlake Holiday Inn, Cleveland Ohio, 

F. Rosenberger, Fluid Transport in Materials Processin, Microgravity Fluids Workshop, 
Westlake Holiday Inn, Cleveland Ohio, August 7-9, 1990. 
F. Rosenberger, Influence of Residual Gravity on Crystal Growth Processes, First 
International Microgravity Congress, Bremen, September 1990 (invited). 
J.I.D. Alexander, Residual Acceleration Effects on Low Gravity Experiments, Institute de 
Mechaniques des Fluides de Marseilles, Universitk de Aix-Marseille III, Marseille, 
France, January 199 1, (3-lecture series, invited). 
J.I.D. Alexander, An Analysis of the Low Gravity Sensitivity of the Bridgman-Stockbarger 
Technique, Department of Mechanical Engineering at Clarkson University, April 199 1 
(invited). 
A. Nadarajah, Measuring Diffusion CoefJicients of Concentrated Solutions, Fifth Annual 
Alabama Materials Research Conference, Birmingham September 199 1. 
A. Nadarajah, Modelling Crystal Growth Under Low Gravity, Annual Technical Meeting 
of the Society of Engineering Science, Gainesville, November 1991. 
J.I.D. Alexander, Vibrational Convection and Transport Under Low Gravity Conditions, 
Society of Engineering Science 28th Annual Technical Meeting, Gainesville, Florida, 
November 6-7, 1991. 
F. Rosenberger, Theoretical Review of Crystal Growth in Space - Motivation and Results, 
International Symposium on High Tech Materials, Nagoya, Japan, November 6-9, 1991 
(plenary lecture, invited). 
F. Rosenberger, Computer Simulation in Materials Science, Mitsubishi Frontiers 
Research Institute, Tokyo, Japan, November 8, 1991 (invited). 
F. Rosenberger, Importance of Materials Research in Space Laboratories for Industrial 
Development, International Symposium for Promoting Applications and Capabilities of 
the Space Environment, Tokyo, Japan, November 14-15,1991 (plenary lecture, invited). 
F. Rosenberger, What Can One Learn from I O  Second Low-Gravity Experiments?, In 
Space 1991, Tokyo, Japan, November 14-15, 1991 (plenary lecture invited). 
P. Larroude, J. Ouazzani and J.I.D. Alexander, Flow Transitions in a 2 0  Directional 
Solidification Model, 6th Materials Science Symposium, European Space Agency, 
Brussels, Belgium, 1992 (poster). 
F. Rosenberger, Microgravity Materials Processing and Fluid Transport, AIAA Course 
on Low-Gravity Fluid Dynamics, AIAA Meeting, Reno, NV, January 10-12, 1992 (3- 
lecture series, invited). 

August 7-9, 1990. 
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17. J.1.D Alexander, Numerical Simulation of Low-g Fluid Transport, AIAA Course on Low- 
Gravity Fluid Mechanics, Reno, NV, January 10-12, 1992 (invited). 
F. Rosenberger, Time Scales in Transport Processes a d  Challenges for Short-Duration 
Low-Gravity Experiments, Falltower Days Bremen, Bremen, Germany, June 1-3, 1992 
(invited). 
J.I.D. Alexander, Modelling or Muddling? Analysis of Buoyancy Efects on Transport 
under Low Gravity Conditions, World Space Congress, Washington, DC, August 28 - 
September 5, 1992 (invited lecture). 

18. 

19. 



A CHEBYSHEV COLLOCATION METHOD FOR MOVING 
BOUNDARIES, HEAT TRANSFER, AND CONVECTION 

DURING DIRECTIONAL SOLIDIFICATION 

Yiqiang Zhang, J. Iwan D. Alexander and Jalil Ouazzani* 

Center for Micogravity and Materials Research, University of Alabama in Huntsville 

Abstract 

Free and Moving Boundary problems require the simultaneous solution of unknown field variables 

and the boundaries of the domains on which these variables are defined. There are many 

technologically important processes that lead to moving boundary problems associated with fluid 

surfaces and solid-fluid boundaries. These include crystal growth, metal alloy and glass 

solidification, melting and flame propagation. The directional solidification of semi-conductor 

crystals by the Bridgman-Stockbarger method172 is a typical example of a such a complex process. 

A numerical model of this growth method must solve the appropriate heat mass and momentum 

transfer equations and detemine the location of the melt-solid interface. In this work, a Chebyshev 

pseudospectral collocation method is adapted to the problem of directional solidification. 

Implementation method involves a solution algorithm that combines domain decomposition, a 

finite-difference preconditioned conjugate minimum residual method and a Picard type iterative 

scheme. 

* Presently at the Institute de Mhique des Fluides de Marseille, 1 rue Honnorat, Marseille, France. 
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1. INTRODUCTION 

Moving and free boundary problems are problems that require as part of the solution the 

determination of some or all the boundaries of the domain under consideration. Included in this 

class of problems are situations that involve fluid surfaces, or solid-fluid interfaces. Freezing and 

melting, crystal growth, flame propagation, liquid surface configurations, are examples of such 

processes that are important in a variety of areas with technological applications. Such problems 

generally pose a challenging problem to the numerical modeller. The Bridgman-Stockbarger 

directional solidification crystal growth technique is a typical example of such a complex problem. 

To adequately represent the physics of the problem, the solution method must be able to cope with 

the following: The unknown location of the crystal-melt interface, high Rayleigh number 

buoyancy-driven flows, heat transfer by conduction (along ampoule walls and in the crystal), 

convective-diffusive heat transfer in the melt and radiative and convective heat transfer between the 

furnace and the ampoule. Even for pure melts, due to differences in thermal conductivities between 

melt , crystal and ampoule, and the differences in thermal and momentum diffusivities in the melt, 

the problem has a variety of disparate length scales over which characteristic features must be 

accurately represented. 

In past work3-11, the Finite Element Method (FEM) has been successfully applied to the 

problem of computing melt and crystal temperature and concentration distributions, melt 

convection and the location of the crystal-melt interface. As an alternative to FEM we present a 

Chebyshev collocation(pseudospectral) method suitable for the solution of this class of problem. 

Spectral and pseudospectral methods12-13 involve the representation of the solution as a truncated 

series of smooth functions of the independent variables. In contrast to FEN, for which the 

solution is approximated locally with expansions of local basis functions, spectral methods 

represent the solution as an expansion in global functions. In this sense they may be viewed as an 

extension of the separation of variables technique applied to complicated problems14. 

For problems that are characterized either by irregularly shaped domains, or even domains 

of unknown shape, it is, in general, neither efficient nor advantageous to try to find special sets of 



3 

spectral functions that are tuned to the particular geometry in consideration (especially in the case of 

solidification, where the melt-crystal geometry is not known a priori ). Two alternative methods 

are mapping and patching14. Mapping allows an irregular region to be mapped into a regular one 

(which facilitates the use of known spectral functions, such as Chebyshev polynomials). For 

directional solidification systems (see Fig. 1) the melt-crystal boundary and, thus, the melt and 

crystal geometries, are unknown. Nevertheless, by specifying the melt-crystal boundary as some 

unknown single-valued function, the melt and crystal geometries can be mapped into simple ones 

by a smooth transformation. This mapping facilitates the use of Chebyshev polynomials to 

approximate the dependent variables in these new domains. 

As can be seen from Figs. 1 and 2, heat transfer to and in the ampoule wall must also be 

considered. To do this we employ patching by subdividing the system into four domains (crystal, 

melt and two ampoule domains), and transform these domains to domains with simple shapes. We 

then solve the resulting problems in each domain and solve the full problem in the complicated 

domain by applying suitable continuity conditions across any boundaries (real or artificial) between 

the domains. 

The formulation of the problem is outlined in section 2. The solution method is described in 

section 3. Our results are presented in section 4 and discussed in section 5. 

2. FORMULATION 

The vertical Bridgman-Stockbarger system is depicted in Fig. 2. A cylindrical ampoule 

with inner and outer diameters of 2Ro and 2(b+RW) contains melt and crystal. To grow the crystal 

the ampoule must be translated relative to a prescribed external temperature gradient. The objective 

of this model is to describe a steady growth process that, in reality, can be achieved between initial 

and terminal transients in sufficiently long ampoules. Toward this end a pseudo-steady state 

model2 is employed that neglects the ends of the ampoule. The remainder of the ampoule is 

assumed to occupy a cylindrical computational region of length L. Ampoule translation is then 

accounted for by supplying a melt to the top of the computational space at a uniform velocity, and 

withdrawing crystal from the bottom at the same velocity. It is thus assumed that there is no lag 
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between the translation rate and the crystal’s growth velocity. Transport of heat from the furnace to 

the ampoule is modelled using a prescribed furnace temperature profile. The heat transfer from the 

furnace to the outer ampoule wall is governed by a heat transfer coefficient Bi(z). This is discussed 

in more detail later. The top and bottom of the ampoule are respectively assigned temperatures of 

TH and Tc (TH > Tc). 

The variables are cast in dimensionless form by using a, a&, a a ~ ,  a A 2  and 

TH - Tc, where a~ is the melt’s thermal diffusivity, to scale length, velocity, stream function, 

vorticity and temperature, respectively. That is, 

(1) 

Here r and z represent the radial and axial coordinates, yf is the stream function, o is the vorticity 

and u = (u,w) represents velocity with radial and axial components u and w, respectively. A tilde 

denotes a dimensional quantity. Melt, crystal and ampoule temperatures will be distinguished by 

the suffixes L (melt), S (crystal)and W (ampoule) when necessary. The location of the crystal melt 

boundary is given by z=h(r,t) and must be determined. The melt is assumed to be incompressible 

and the stream function and vorticity are defined by the velocity components (u,w) as 

The governing equations then take the following form 

In the melt, 0 <r < 1, O< z < h(r,z) 

(3) 

(4) 

and 
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u - + w ~ =  aT AT , A = - + L  a2 a + a2 
a r a z  ar2 rar aZ,’ 

where Pr = v / a ~  is the Prandtl number, Gr = ~(TH- Tc)gRo3/v2 is the Grashof number, v is the 

melt’s viscosity and p is the melt’s thermal expansion coefficient. 

In the crystal, O < r  < 1, h(r) cc z c h  , 
aT a’Pe- = AT, aZ 

and in the ampoule wall, 1 e r c r, , Oc z c A, 

aT a”Pe- = AT, az (7) 

where a’, and a” are, respectively, the ratios of the melt’s thermal diffusivity with the crystal and 

ampoule thermal diffusivities, and Pe = VORO/~L is the Peclet number and Vo is the ampoule 

translation rate. 

For the temperature the boundary conditions are: 

At the melt-crystal interface z= h(r,t) 

TL= Ts = TM, 

k’VTLn - VTsn=StPe a‘ne,, (9) 

where TM represents the dimensionless melting temperature, k’ is the ratio of melt and crystal 

conductivities, St = AH/(Cp,AT) is the Stefan number. The vector n is the unit normal to the 

crystal-melt surface and points into the melt. At the outer ampoule wall, r= rw 

aT 
ar 

- - = Bi(z)(T - Tp(z)). 

The temperatures at z=O and z=A are constant, i.e. 

T(r,O) = 1, T(r,h) = 0, 

and the heat flux is continuous across the inner ampoule wall 
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(12) 

In (10) Bi(z) is a heat transfer coeffcient and TF(z) is the furnace temperature profile. The 

coefficients k* and k** represent the ratio of the wall conductivity with that of the melt and 

ampoule, respectively. 

For the stream function the boundary conditions are 

1 1 2  Yf (0,Z) = 0, W( 1 , ~ )  = - - Pe, W(0,z) = - - r Pe, w(h(r),z) = - 1 2 $Pe, 2 2 

and the vorticity is zero at -0. At the other melt boundaries the boundary conditions for the 

vorticity are enforced (iteratively) using previously computed values of the velocity field (the 

scheme is explained in section 3.3. The velocity boundary conditions are 

u(0, z) = u(l,z)=u(r,h(r)) =O, w(0,z) = w( l,z)= w(r,h(r))=Pe. (14) 

Note that, at the melt-crystal boundary there are two boundary conditions for the 

temperature. In the following section we describe an iterative scheme which distinguishes one of 

the temperature boundary conditions and uses it to compute the interface shape iteratively. 

3. SOLUTION METHOD 

The solution method is based on a Picardl5 type iteration which consists essentially of four 

steps: 

1. The initial shape of the crystal-melt interface is specified and an independent variable 

transformation is applied to the governing equations and boundary conditions in the melt, crystal 

an ampoule regions. This specifies the computational domains. 

2. The coupled momentum, heat, mass and species equations are then solved using three of the 

four boundary conditions on the moving boundary. 
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3. The remaining boundary condition (or distinguished condition2), in this case equation (8)’ is 

used to compute corrected boundary locations. 

4. Steps 2 and 3 are repeated until the distinguished boundary condition is satisfied. 

The solution method is implemented using domain decomposition and a preconditioned 

generalized conjugate residual methad13*16 

3.1 Domain Decomposition 

The physical region is split into four computational domains, Q, i=1, ..., 4. The domains 

correspond to the melt (El), the crystal (Z3), and the portions of the ampoule wall adjacent to the 

melt (S2) and the crystal (S4). The irregularly shaped domains are mapped onto rectangular 

regions by 

z - A  z4+i24. h(1)-A’ 5=r ,q=2-  

3.2 Spatial discretization 

The dependent variables, 0 are approximated by Chebyshev polynomialsl*-13, i.e 

where Tij = TiTj , and the Tk are Chebyshev polynomials of order k. The points (Xi , Yj ) are 

related to the coordinates 6 and q by 
5 = aX + b, = C Y  + d, 

where a and b are determined by the transformation of each domain, Q, to [-l,l]x[-l,l]. The 

discrete points (Xi,Yj), i=O, N, j=O,M,are the Gauss-Lobatto collocation pointsl3. That is, 
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X i  = cos n - ,i = 0, 1 ,..., N [&I 
Xi  =cosn: - , i=O,  l,...yNy [:I 

The spatial derivatives are given by 

where the derivatives with respect to X and Y have the forms 

N N a (X, Y) a@(X*Y.) 
h r  = ?r ” r ’ ’ = DiQ(+ Yj) = Dip@ pj, 
dii dii p = o  p = o  

q=o  q=o 

where the expressions for Dx, D,, Dxx, D,, and D, are given explicitly by Ouazzanil7. 

3.3 Pseudo-unsteady discretization 
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where the A(i), A(i), S(i) and +ti) are given in Appendix I. To solve these equations using a 

pseoudo- unsteady iterative scheme (28) is rewritten as 

pd + A(') )$ (i) = S(i) + A(i)+(i), i = 1,6 (30) at 

The left-hand side of (29) is written in discrete form as 

* + A )+ =(A + ow+' -oQn, (zi 
where o(i) = l/Adi) for i=1,2,4,5,6 and is zero for i=3. the index in parentheses has been omitted 

for clarity and the superscript denotes the pseudo-time or iterative step number. Note that the time 

step size, A&), is generally different for each of the equations. 

The problem now has the form 

Hsp@*' + oI+~+' = F(+,h)", 

where 

H,, = A -  A, and F =  S+oQn, (33) 

and H,, is obtained from the expressions in Appendix B using the Chebyshev derivatives (26)- 

(28) and equation (23). A superscript n denotes a quantity evaluated at the nth iterative step (note 

that the indices in parethenses have been omitted for clarity) . 
3.4 Vorticity boundary condition 

To solve the vorticity-stream function equations we adopted the following procedure which 

is simply an extension, for Chebyshev approximations, of an approach described by Peyret 12. 

The velocity field is calculated from the stream function obtained from the previous iteration. The 

vorticity at the boundary which corresponds to this velocity field is then found from 
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and the value of the vorticity to be applied at the boundary, @+I, is given by 

+ (1 - y>on. an+1 (35) 

Here y (0 < ye 1) is a relaxation parameter. 

3.5 Preconditioned Generalized Conjugate Residual Method 

The operator H, is represented by a full matrix of order (N+1)2 x (M+1)2 and is not 

symmetric. In order to solve the system of equations and boundary conditions represented by 

(28)-(32) and (A.9)-(A.18), each of the spectral operators HSp for each of the domains ai , i=1,4 

and the conditions on shared domain boundaries Ri n Ri, i#j, i,j=1,4 are combined and 

approximated by a single finite difference operator Hfd. This is defined over the entire domain 

Q a i .  The following iterative procedure which consisits of inner and outer loops is then 
4 

1-1 

adopted: 

Outer loop: First an initial interface shape ho is assumed 

Inner loop: The residual R is then initialized by 

Ro = H:p@ - F, 

where Q, represents the Then we solve 
Hideo = RO, 

(36) 

(37) 

where H" = H + 01. Then we set 

and calculate 
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(39) 

The variables dp are then updated from 

am+' = <pm + a m + p ,  

and the problem 

is solved for 6. P is then updated using 

where 

The procedure is continued until I R I < E. 

The preconditioned problem is given by equations (37) and (41). The finite difference 

operator H*fd is approximated by incomplete LU decomposition. The solution for 0 is obtained 

by forward and backward substitution. The subsequent approximations to dp = (Ts,TL,o,w ) are 

then obtained from (40). At this point we note that while we used a nine-diagonal matrix for the 

second-order central finite difference operator for the solution of the temperature field, a seven 

diagonal operator was used for the solution of the stream-function and vorticity as it appeared to 

lead to more rapid convergence. This means that the cross-derivative terms were evaluated at the 

previous time step and were included in F on the right-hand side of (32). 

3.6 Interface Shape Update 
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This iterative procedure is repeated until the convergence criterion is satsified. The first of 

equations (A. 17) is used as a distinguished boundary condition. If it is not satisfied, another outer 

loop iteration is performed and the interface shape is relocated using either Newton's method 

where 9i is the difference between the temperature at the ith interfacial site and the melting 

temperature Tm; or from a searching method 

Here a is found by numerical experiment. We found that by using the Newton method for the first 

few iterations and then the searching method for subsequent iterations, we achieved better success 

than with the Newton method alone. 

4. RESULTS 

We carried out several tests of the method. The results are shown in Table 1 and in Figs. 3 

and 4. The parameters used are given in Appendix C and correspond to the thermophysical 

properties of Gallium-doped Germanium. For the cases examined our results are in good 

agreement with the FEM calculations of Adornato and Brown.2 For example, the difference 

between our results and theirs for the maximum stream function computed for Fig. 3c is less than 

2%. 

Figure 2 shows results for a furnace with a constant temperature gradient and Bi=7.143. 

That is, 

TAZ) = 1 - A-l. (46) 

The isotherms are practically flat except at the crystalmelt boundary where the mismatch in thermal 

conductivity results in a convex interface. The flow depicted by the streamlines in Fig. 3b-d is a 
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combination of the ampoule translation (which, if buoyant convection were absent, would appear 

as a set of vertical streamlines parallel to the ampoule wall) and buoyant flow caused by radial 

gradients in temperam. This results in an upward flow of hot melt near the ampoule wall and a 

downflow near the ampoule centerline. Note the increase in flow intensity as the Grashof number 

is increased. 

Figure 4 shows results for different Grashof numbers for a non-uniform furnace 

temperature 

Profile 

Tkz) =0.5[1+ tanh (6-12~A-~)] (47) 

together with a position dependent heat transfer function given by 

Bi(z) =0.2{2[1+ tanh (5-2211 + 1+ tanh (22-15)). (48) 

Radial temperature gradients arise for two reasons in this problem: The mismatch in thermal 

conductivities at the ampoule-melt-crystal junction and the change in heat transfer at the quasi- 

adiabatic zones. These zones are created by the furnace temperature pmfde and conditions (47) and 

(48). This heating configuration produces two counter rotating cells. The upper cell increases in 

spatial extent as the Grashof number is increased. 

Table 1 shows the CPU times, number of iterations taken to converge and compiler options 

for the case shown in Fig. 4b for a CRAY/XMP, an iPSC parallel processor and an Ardent Titan 

computer. 

5. DISCUSSION 

Chebyshev spectral methods that have been shown to achieve superior accuracy for a wide 

range of fluid flow problems defined in regular geometries can be applied to problems involving 

unknown free and moving irregular boundaries through a combination of mapping and domain 

decomposition. For the directional solidification described here, this was achieved without 

incurring excessive CPU times and has been implemented on several different machines to 

illustrate the magnitude of the CPU times involved for a typical calculation. Whether there is 
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ultimately any advantage in using such spectral methods over finite elements will depend on the 

specific application. It wil l  most likely depend on the accuracy required and on whether the ability 

of the Chebyshev collocation method to achieve better accuracy for a given number of collocation 

points (which is recognized for a variety of flows in regular geometries) is retained or degraded 

when using domain decomposition. 

Acknowledgements 

This work was supported by grant NAG8-790 from the National Aeronuatics and Space 

Administration, and by the State of Alabama through Albama Supercomputer Network and the 

Center for Microgravity and Materials Research at the University of Alabama in Huntsville. The 

authors would also like to thank Professors F. Rosenberger and R. Peyret for helpful comments 

and discussion. 

Appendix A 

Transformed Equations 

After the equations and boundary conditions (2) - (14) have been transformed according to 

(15)-(18) we obtain the following equations. 

For O < q  < 1 

where 

and 
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For 1 <q e2 

0 < 5 < 1  

where 

and 

(A.7) 

. .  

In the ampoule wall, 1 5 < rw, 0 e q 2, where h(r) is taken to be a constant at each inner 

iteration, we have 

and 

The boundary conditions become 

(A. 10) 

(A.11) 

T = 1, w = - 1/2?Pe, atq = 0, (A. 12) 
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T = O a t q = 2 , 0 < t < r w  . 
Finally, at the crystal melt interface the boundary conditions are 

and 

(A.13) 

(A. 14) 

(A. 15) 

(A.16) 

(A. 17) 

(A. 18) 

In (A.17) we have used the fact that the melting temperature TM is assumed to be constant along 

the crystal melt interface (i.e. aT/aC = 0). The vorticity boundary condition is given by equation 

(35) with 

(A. 19) 

Appendix B 
The A(i), A(i) and F(i) referred to in section 3.3 are expressed in terms of the equations 

given in Appendix I as follows: 

@(1) = T"+1 
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(B.3: 

(B.6: 

(B.11: 

(B.12: 

(B.13) 

(B.14) 
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Appendix C 

Physical constants, system dimensions and thennophysical properties of Gallium doped 
Germanium used in the calculations 

Constant gradient furnace (Fig. 2) 

Constant gradient furnace 

Inner ampoule radius (RQ) 
Constant gradient furnace 

fimension 
[Cms-'] 

[ml 

Heat pipe furnace 
Kinematic viscosity (v) [cm2 s-11 
T h d  conductivity (ampoule) yW K-bn- l ]  
Constant gradient furnace 

Ge:Ga 
4x104 

7 .O 
7.62 

0.7 
0.952 

0.5 
0.762 
1.3( 10)-3 

3.27 
0.26 
0.17 
0.39 
5.5 
5.5 

460 
0.39 
0.39 
5 (10)-4 
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Figure Captions 

Fig. 1 Typical Bndgman-Stockbarger set-up 

Fig. 2 a) The model Bridgman-Stockbarger system and b) the computational domains 

Fig.3 Results for results for a furnace with a constant temperature gradient, Bi=7.143 and a Pr = 

0.07 melt, a) Gr = 5206, b) Gr = 52,060 c) Gr = 520,600 

Fig. 4 Results for a non-uniform furnace temperature profile (47) and position dependent heat 

transfer coefficient (48) for Pr 4.007 and a) Gr = 7,140, b) Gr = 14280 c) Gr=71,400 

d) GI= 142,800. 
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FIG. 4 



machine 

XMP/24 
ipsc 
(1 node) 

Ardent 
Titan 11 
2 CPU’S 

number of inner iterations 
for each outer loop 

;:Ide1’ double 1 11015 1 10 I613 
precision and 

o timization 

Table 1: Comparison of CPU times for different machines for the Gr = case using our method. 


